Differential efficacy of inhibition of mitochondrial and bacterial cytochrome bc1 complexes by center N inhibitors antimycin, ilicicolin H and funiculosin.

نویسندگان

  • Frederik A J Rotsaert
  • Martina G Ding
  • Bernard L Trumpower
چکیده

We have compared the efficacy of inhibition of the cytochrome bc1 complexes from yeast and bovine heart mitochondria and Paracoccus denitrificans by antimycin, ilicicolin H, and funiculosin, three inhibitors that act at the quinone reduction site at center N of the enzyme. Although the three inhibitors have some structural features in common, they differ significantly in their patterns of inhibition. Also, while the overall folding pattern of cytochrome b around center N is similar in the enzymes from the three species, amino acid sequence differences create sufficient structural differences so that there are striking differences in the inhibitors binding to the three enzymes. Antimycin is the most tightly bound of the three inhibitors, and binds stoichiometrically to the isolated enzymes from all three species under the cytochrome c reductase assay conditions. Ilicicolin H also binds stoichiometrically to the yeast enzyme, but binds approximately 2 orders of magnitude less tightly to the bovine enzyme and is essentially non-inhibitory to the Paracoccus enzyme. Funiculosin on the other hand inhibits the yeast and bovine enzymes similarly, with IC50 approximately 10 nM, while the IC50 for the Paracoccus enzyme is more than 10-fold higher. Similar differences in inhibitor efficacy were noted in bc1 complexes from yeast mutants with single amino acid substitutions at the center N site, although the binding affinity of quinone and quinol substrates were not perturbed to a degree that impaired catalytic function in the variant enzymes. These results reveal a high degree of specificity in the determinants of ligand-binding at center N, accompanied by sufficient structural plasticity for substrate binding as to not compromise center N function. The results also demonstrate that, in principle, it should be possible to design novel inhibitors targeted toward center N of the bc1 complex with appropriate species selectivity to allow their use as drugs against pathogenic fungi and parasites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Qn site of the cytochrome bc1 complex in Saccharomyces cerevisiae with mutants resistant to ilicicolin H, a novel Qn site inhibitor.

The cytochrome bc1 complex resides in the inner membrane of mitochondria and transfers electrons from ubiquinol to cytochrome c. This electron transfer is coupled to the translocation of protons across the membrane by the protonmotive Q cycle mechanism. This mechanism topographically separates reduction of quinone and reoxidation of quinol at sites on opposite sites of the membrane, referred to...

متن کامل

Inhibition of the yeast cytochrome bc1 complex by ilicicolin H, a novel inhibitor that acts at the Qn site of the bc1 complex.

Ilicicolin H is an antibiotic isolated from the "imperfect" fungus Cylindrocladium iliciola strain MFC-870. Ilicicolin inhibits mitochondrial respiration by inhibiting the cytochrome bc(1) complex. In order to identify the site of ilicicolin action within the bc(1) complex we have characterized the effects of ilicicolin on the cytochrome bc(1) complex of Saccharomyces cerevisiae. Ilicicolin inh...

متن کامل

Asymmetric and redox-specific binding of quinone and quinol at center N of the dimeric yeast cytochrome bc1 complex. Consequences for semiquinone stabilization.

The cytochrome bc1 complex recycles one of the two electrons from quinol (QH2) oxidation at center P by reducing quinone (Q) at center N to semiquinone (SQ), which is bound tightly. We have analyzed the properties of SQ bound at center N of the yeast bc1 complex. The EPR-detectable signal, which reports SQ bound in the vicinity of reduced bH heme, was abolished by the center N inhibitors antimy...

متن کامل

Ilicicolin Inhibition and Binding at Center N of the Dimeric Cytochrome bc1 Complex Reveal Electron Transfer and Regulatory Interactions between Monomers.

We have determined the kinetics of ilicicolin binding and dissociation at center N of the yeast bc(1) complex and its effect on the reduction of cytochrome b with center P blocked. The addition of ilicicolin to the oxidized complex resulted in a non-linear inhibition of the extent of cytochrome b reduction by quinol together with a shift of the reduced b(H) heme spectrum, indicating electron tr...

متن کامل

Involvement of Cytochrome P-450 in n-Butyl Nitrite-Induced Hepatocyte Cytotoxicity

      Addition of n-butyl nitrite to isolated rat hepatocytes caused an immediate glutathione depletion followed by an inhibition of mitochondrial respiration, inhi- bition of glycolysis and ATP depletion. At cytotoxic butyl nitrite concentrations, lipid  peroxidation  occurred  before  the  plasma  membrane  was  disrupted. Cytochrome P-450 inhibitors inhibited peroxynitrite formation and prev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1777 2  شماره 

صفحات  -

تاریخ انتشار 2008